Las leyes que se requieren para las explicaciones nomológico-deductivas comparten una característica básica: son, como diremos, enunciados de forma universal. Hablando en sentido amplio, un enunciado de este tipo afirma la existencia de una conexión uniforme entre diferentes fenómenos empíricos o entre aspectos diferentes de un fenómeno empírico. Es un enunciado que dice que cuandoquiera y dondequiera que se dan unas condiciones de un tipo especificado F, entonces se darán también, siempre y sin excepción, ciertas condiciones de otro tipo G. (No todas las leyes científicas son de este tipo. En las secciones que siguen encontraremos leyes de forma probabilitaria y explicaciones basadas en ellas).
He aquí algunos ejemplos de enunciados de forma universal: cuandoquiera que aumenta la temperatura de un gas, permaneciendo su presión constante, su volumen aumenta; siempre que un sólido se disuelve en un líquido, el punto de ebullición del líquido sube; siempre que un rayo de luz se refleja en una superficie plana, el ángulo de reflexión es igual al ángulo de incidencia; siempre que rompemos en dos una varilla de hierro magnética, las dos partes son imanes también; siempre que un cuerpo cae libremente desde una situación de reposo al vacío cerca de la superficie de la Tierra, la distancia que cubre en t segundos es de metros. La mayoría de las leyes de las ciencias naturales son cuantitativas: afirman la existencia de conexiones matemáticas específicas entre diferentes características cuantitativas de los sistemas físicos (por ejemplo, entre el volumen, la temperatura y la presión de un gas) o de determinados procesos (por ejemplo, entre el tiempo y la distancia de la caída libre, en la ley de Galileo; entre el período de revolución de un planeta y su distancia media al Sol, en la tercera ley de Kepler; entre los ángulos de incidencia y de refracción, en la ley de Snell). Estrictamente hablando, un enunciado que afirma la existencia de una conexión uniforme será considerado una ley sólo si hay razones para suponer que es verdadero: normalmente no hablaríamos de leyes falsas de la naturaleza. Pero si se observa rígidamente este requisito, entonces los enunciados a los que comúnmente nos referimos, como la ley de Galileo y la ley de Kepler, no se considerarían leyes; porque, de acuerdo con los conocimientos físicos corrientes, sólo se cumplen de una manera aproximada; y, como veremos, la teoría física explica por qué esto es así. Observaciones análogas podrían hacerse respecto de las leyes de la óptica geométrica. Por ejemplo, la luz no se desplaza estrictamente en líneas rectas, ni siquiera en un medio homogéneo: puede doblar esquinas. Usaremos, por tanto, la palabra «ley» con cierta liberalidad, aplicando el término a ciertos enunciados del tipo a que aquí nos referimos, enunciados de los que se sabe, sobre una base teórica, que sólo se cumplen de una manera aproximada y con ciertas cualificaciones. Volveremos sobre este punto cuando en el próximo capítulo estudiemos la explicación de leyes mediante teorías.
Vimos que las leyes invocadas en las explicaciones nomológico-deductivas tienen la forma básica siguiente: «En todos los casos en que están dadas unas condiciones de tipo F, se dan también las condiciones de tipo G». Pero es interesante señalar que no todos los enunciados de esta forma universal, aunque sean verdaderos, pueden considerarse leyes de la naturaleza. Por ejemplo, la oración «Todos los minerales que hay en esta caja contienen hierro» es de forma universal (F es la condición de ser un mineral de esta caja; G, la de contener hierro); sin embargo, aunque sea verdadero, no habría que considerarlo como una ley, sino como la aserción de algo que «de hecho es el caso», como una «generalización accidental». O bien considérese el enunciado: «Todos los cuerpos compuestos de oro puro tienen una masa menor de 100.000 kilogramos». Sin duda, todos los objetos de oro hasta ahora examinados por el hombre se ajustan a lo que ese enunciado dice; hay, por tanto, un testimonio confirmatorio considerable, y no se conocen casos que lo refuten. Además, es perfectamente posible que nunca en la historia del universo haya habido o haya en el futuro un cuerpo de oro puro con una masa de 100.000 kilogramos o más. En este caso, la generalización propuesta no sólo estaría bien confirmada, sino que sería verdadera. Y, sin embargo, su verdad la consideraríamos presumiblemente como accidental, sobre la base de que no hay nada en las leyes básicas de la naturaleza tal como ésta se concibe en la ciencia contemporánea que nos haga descartar la posibilidad de que exista -o incluso de que podamos producir- un objeto de oro sólido con una masa que exceda de 100.000 kilogramos.
Así pues, una ley científica no queda adecuadamente definida si la caracterizamos como un enunciado verdadero de forma universal: esta caracterización expresa una condición necesaria, pero no suficiente, de las leyes del tipo que aquí estamos discutiendo.
¿En qué se distinguen las leyes genuinas de las generalizaciones accidentales? Este intrincado problema ha sido intensamente discutido en los últimos años. Pasemos revista brevemente a algunas de las principales ideas surgidas del debate, que continúa todavía.
Una diferencia notable y sugestiva, señalada por Nelson Goodman, es la siguiente: una ley puede servir -mientras que una generalización accidental no- para justificar condicionales contrafácticos, es decir, enunciados de la forma «Si A fuera (hubiera sido) el caso, entonces B sería (habría sido) el caso», donde A no es (no ha sido) de hecho el caso. Así, la aserción «Si hubiéramos puesto esta vela de parafina en una caldera de agua hirviendo, se habría fundido» podría justificarse aduciendo la ley que la parafina es líquida por encima de los 60 grados centígrados (y el hecho de que el punto de ebullición del agua son 100 grados centígrados). Pero el enunciado «Todos los minerales que hay en esta caja contienen hierro» no podría ser utilizado de modo análogo para justificar el enunciado contrafáctico «Si hubiéramos puesto este guijarro en la caja, contendría hierro». De modo semejante, una ley, en contraste con una generalización accidentalmente verdadera, puede justificar condicionales subjetivos,es decir, enunciados del tipo «Si aconteciera A, entonces también acontecería B», donde se deja en suspenso si A ha sucedido o no de hecho. El enunciado «Si pusiéramos esta vela de parafina en agua hirviendo, entonces se fundiría» es un ejemplo.
Estrechamente relacionada con esta diferencia hay otra, que es de especial interés para nosotros: una ley puede -mientras que una generalización accidental no- servir de base para una explicación. Así, la fusión de una vela concreta de parafina puesta en agua hirviendo se puede explicar, de acuerdo con el esquema (N-D), por referencia a los hechos concretos mencionados y a la ley de que la parafina se funde cuando su temperatura sobrepasa los 60 grados centígrados. Pero el hecho de que un mineral concreto de la caja contenga hierro no se puede explicar de una manera análoga por referencia al enunciado general de que «todos los minerales que hay en las cajas contienen hierro».[...] Finalmente, señalemos que un enunciado de forma universal puede considerarse como una ley incluso aunque de hecho no se cumpla en ningún caso. Consideremos, a título de ejemplo, el enunciado: «En cualquier cuerpo celeste que tenga el mismo radio que la Tierra, pero dos veces su masa, la caída libre a partir del estado de reposo se ajusta a la fórmula s= 9,81». Puede que en todo el universo no exista objeto celeste alguno que tenga ese tamaño y esa masa, y sin embargo, el enunciado tiene el carácter de una ley. Porque este enunciado (o, mejor dicho, un enunciado muy aproximado, como en el caso de Galileo) se sigue de la teoría newtoniana de la gravitación y del movimiento en conjunción con el enunciado de que la aceleración de la caída libre sobre la Tierra es de 9,81 metros segundo por cada segundo; goza, por tanto, de un sólido apoyo teórico, de igual modo que la ley de caída libre sobre la Luna a que antes nos referíamos.
Dijimos que una ley puede justificar condicionales subjetivos y condicionales contrafácticos acerca de casos potenciales, es decir, acerca de casos particulares que pueden ocurrir, o que podían haber ocurrido, pero que no han ocurrido. De manera similar, la teoría de Newton justifica nuestro enunciado general, si la formulamos a modo de un enunciado subjuntivo con el que pusiéramos de relieve su carácter de ley; obtendríamos lo siguiente: «En cualquier cuerpo celeste que pueda existir y que tenga el mismo tamaño que la Tierra, pero dos veces su masa, la caída libre se ajustaría a la fórmula s= 9,81». En cambio, la generalización acerca de los minerales no se puede parafrasear como si afirmara que cualquier mineral que pudiera haber en esta caja contendría hierro, ni tampoco, desde luego, tendría este aserto ninguna justificación teórica. [...]
Así, el que un enunciado de forma universal cuente como una ley dependerá en parte de las teorías científicas aceptadas en la época. Esto no quiere decir que las «generalizaciones empíricas» -enunciados de forma universal que están empíricamente bien confirmados, pero que no tienen una base en la teoría- no se consideren nunca como leyes: las leyes de Galileo, de Kepler y de Boyle, por ejemplo, fueron aceptadas como tales antes de que recibieran una fundamentación teórica. La relevancia de la teoría es más bien de este tipo: un enunciado de forma universal, ya esté empíricamente confirmado o no haya sido contrastado todavía, se considerará como una ley si está implicado por una teoría aceptada (a los enunciados de este tipo se les denomina con frecuencia leyes teóricas); pero incluso si estuviera empíricamente bien confirmado y fuera presumiblemente verdadero de hecho, no se consideraría como una ley si no admitiera ciertos acontecimientos hipotéticos [...] que una teoría aceptada califica como posibles.
Filosofía de la ciencia natural,Alianza, Madrid 1973, p. 85-91. |